
Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bringing Best Practices from Web Development Into the Vehicle, Branigan, Cunningham, Hackleman, Dempsey & VanderLei.

Page 1 of 6

Bringing Best Practices from Web Development Into the Vehicle

James Branigan
Band XI International, LLC

Creedmoor, NC

 John Cunningham
Band XI International, LLC

West Hartford, CT

 Patrick Dempsey

Brett Hackleman
Paul VanderLei

Band XI International, LLC
Bracey, VA, Scottsdale, AZ, and Grand Rapids, MI

ABSTRACT
Building embedded systems is nothing like building desktop applications, as the hard real time

requirements and relative harshness of the operating environment further constrains design choices to meet real
world needs. Those familiar with mainframe or server farm hosted, high volume, wide bandwidth applications
know similar harsh computing environments for application development. Given that more man-hours have
been devoted to web application development over the past decade than have been devoted to embedded
application development, there may be some valuable lessons to be learned that can be adopted by the embedded
community for in-vehicle computing. The best web application development teams successfully apply the notions
of Representational State Transformation (REST) and Resource Description Framework (RDF) to handle the
increasing demands on their sites. We have taken these technologies and applied them to the smaller scale
vehicle telematics platforms (PowerPC, ARM, and Atom) to test their viability. This paper describes how we
approached the design decisions that enabled us to successfully wrap a commercial J1939 CAN bus with a
miniature web server that provides a REST API for applications to interact with an engine control unit. The
architecture has been successfully deployed for custom mining and construction equipment.

INTRODUCTION
Software applications for desktop systems enjoy an

abundance of resources, such as available memory, disk
space, processing power, and network bandwidth.
Embedded and server applications struggle with the issue of
resource scarcity in contrast to desktop systems. The
economics behind the scarcity differ, with the embedded
systems characterized by low cost, low power devices and
the server market characterized by high cost, high utilization
devices. The scarcity of resources manifests itself in both
marketplaces and places responsibility for efficient use of
those resources in the hands of application developers. As
the expectations of embedded applications have increased,
we have seen an increase in the importance of application
integration and distributed communications to support data
sharing and multi-vendor, multi-programming language
solutions.

When attempting to address the application integration and
distributed communication challenges of embedded systems,

we focus the search for potential solutions in problem
domains that share a common respect for the resource
scarcity found in the embedded computing domain. The
idea behind this approach is that it is easier to stay efficient
than it is to become efficient. As embedded platform
processing power, available memory, disk space and
network bandwidth have increased over time, we find that
approaches developed for the resource efficient server
environments over a decade ago are now applicable and
viable in the embedded domain. Unfortunately, some
developers have chosen to use the increased embedded
platform capabilities to deploy the kinds of applications
developed for desktop applications. We have directly
observed that this approach tends toward failure and should
be avoided.

In this paper, we describe an embedded system
architecture, called Arbor, which adopts successful, proven
techniques from the World Wide Web application server

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bringing Best Practices from Web Development Into the Vehicle, Branigan, Cunningham, Hackleman, Dempsey & VanderLei.

Page 2 of 6

domain. This approach readily solves both the multi-
vendor, multi programming language integration problem
and the distributed communications problem for sharing data
with peers and remote servers. We have successfully used
this system architecture to develop applications that sense
and control custom mining equipment employing SAE
J1939 messaging over a Controller Area Network (CAN)
bus. We have also used this system to allow third party
vendors to develop, integrate, and install prognostic and
diagnostic algorithms that provide advanced, just in time
maintenance capabilities for military vehicle transmissions.

ON DISTRIBUTED COMPUTING
During our research efforts we discovered a paper entitled

"A Note on Distributed Computing" [1] published in 1994.
This paper should be required reading for anyone designing,
implementing, or using distributed software. It describes the
flurry around, and ultimate failure of, the distributed systems
programming models that appear every few years, usually
linked to new programming languages. Despite being
fifteen years old, this paper remains highly relevant today.

In "A Note on Distributed Computing", Waldo et al make
the case that objects interacting across a distributed system
(and network) are fundamentally different from those within
a single address space. Designers and implementers must
explicitly contend with the challenges presented by latency,
memory access models, concurrency, and the higher
likelihood of partial failures. Unfortunately, most attempts
at building distributed systems failed to adequately support
the basic requirements of robustness and reliability.

Based on this paper and our own research and experience
building commercial systems, we identified the primary
lessons learned, as they apply to any distributed services
design:

• Do not attempt to hide the differences between
local and remote services

• Do not provide generic marshaling support, it only
encourages bad programming habits

• All calls to remote services should be asynchronous
• Plan for partial and full failures when talking to

remote services
• Encourage, and where possible, force good

programming habits through careful API design

ON SYSTEM INTEGRATION PATTERNS
Integrating a system requires the connection of different

parts. These parts often come from multiple vendors. The
parts may also be made of multiple materials. In the case of
a software systems, the different materials are different
programming languages and operating systems.

There are two orthogonal concerns that must be addressed
when integrating parts of a software system.

• Call direction, as in determining which part
initiates the call and which part receives the call

• Call payload, as in what information is sent with
the call and how is the information packaged

There are three popular integration patterns commonly
adopted in production systems that address the two concerns.

• A language-to-language binding
• A publish and subscribe mechanism
• A data format accessible over a stateless, language

neutral transport
We will cover the benefits and drawbacks of each

approach below, beginning by briefly describing each of the
three common integration patterns.
Language to Language Binding

Language-to-language, as an integration pattern, works
regardless of the call direction. Work is performed to allow
the programming language that is initiating the call to invoke
a function or subroutine in a second language. The corollary
requires establishing the mechanism by which the invoked
language can initiate callbacks into the first language. There
is always syntactic mapping occurring here, where the
payload may need to be massaged from its representation in
one programming language to an equivalent representation
in another programming language. There also may be
semantic mapping occurring, in the cases where concepts
must be represented differently in the two programming
languages. One common place where semantic mapping
occurs is when mapping between an object oriented
language and a procedural language. A concrete example of
a language-to-language binding is the Java Native Interface,
which is commonly used to connect Java code to C code. [2]
Publish and Subscribe Binding

The publish and subscribe pattern takes a specific position
on call direction. Producers push, or publish, information to
a central broker. This broker maintains a list of consumers
who have registered interest in the published messages. The
broker then pushes the producer’s publication on to all of the
registered consumers. In this integration pattern, consumers
may register their interest in only certain types of
publications. A publisher may publish regardless of how
many consumers care about the publication. The format of
the call payload must be reified, so that the loosely coupled
producers and consumers can both interpret the data the
same way. This removes the semantic mapping burden that
is present in the language-to-language binding. However,
the syntactic mapping remains as a cost to be incurred for
attaching a particular language to the publish and subscribe
system. The publish and subscribe pattern is well described

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bringing Best Practices from Web Development Into the Vehicle, Branigan, Cunningham, Hackleman, Dempsey & VanderLei.

Page 3 of 6

by Hohpe and Woolf in Enterprise Integration Patterns [3]
and Chappell in Enterprise Service Bus [4].
Standard Data Format Over a Stateless, Language
Neutral, Transport Binding

The standard data format over a stateless, language neutral
transport pattern takes a specific position on call direction,
but one that is the inverse of the publish and subscribe
pattern. Here, consumers pull information from the
producers. This has the benefit of avoiding the need to
maintain a list of registered consumers. The stateless
property of the system allows the network topology to
change without introducing systemic problems. Like the
publish and subscribe binding, the call payload format is
reified, to reduce the semantic mapping costs. To reduce the
syntactic mapping costs, a language neutral transport is used
for transmission of the call payload. Typically, a transport is
chosen which already enjoys full support in a large number
of programming languages. The World Wide Web is the
largest, most successful embodiment on this approach.
Pattern Evaluation

 A language-to-language binding is undesirable for many
reasons. The primary reason being that it is very difficult to
do well. This type of integration often introduces memory
leaks, due to errors that occur when mapping the
representations of the call payload. Language-to-language
bindings are inherently brittle and changes to underlying
shared objects can impact the integration. In the concrete
domain of condition based maintenance applications, this
requires work on a (number of sensors) × (number of
algorithms) basis.

Moving to the publish and subscribe system helps with a
few of the issues associated with the language-to-language
binding. Most importantly, it turns the multiplicative
complexity into an additive one. Each portion of the system
only needs to provide integration to the publish and
subscribe bus. However, depending on how that integration
is done, it is still susceptible to brittleness. New
complications are added to a system by using this style of
integration. Since all intra-system communication is
happening through the publish and subscribe bus, it can be
very difficult to debug problems which involve multiple
messages crossing the bus. Since events sent over the bus
are temporal, system wide logic errors can be introduced
when a subset of the nodes on a bus are disconnected due to
a network partition. This would be unusual in a traditional
enterprise IT shop, but is expected in an ad-hoc mesh-
networking environment.

In a publish and subscribe system, data producers publish
or push their information to the central broker. This broker
then consults the list of subscribers to that information and
pushes the information to them. There are many problems

with this approach that place fundamental restrictions on a
systems ability to scale. One such problem is that all
interested parties are notified at the rate of production, rather
than at the rate they are prepared to consume. Another issue
is that the list of interested consumers that must be
maintained by the central broker. The required subscriber
list maintenance becomes problematic when used in an
environment where nodes come and go frequently. There is
a bootstrapping issue as well, when a node arrives late to a
bus and has misses an initial set of publications.

Defining a data format over a stateless, language neutral
transport provides a better solution than either a language-
to-language binding or a publish and subscribe system. As
long as the chosen programming languages natively support
the transport, you can safely avoid the brittleness problem.
The data format stays consistent, which enables portions of
the system to be upgraded or patched, without impacting the
other unchanged portions. Additionally, since data is pulled
rather than pushed, we avoid the network connectivity issues
of the publish and subscribe bus. The pulling of data also
avoids the need for centralized registration lists of parties
interested in a piece of information. Pulling can occur at any
time, so the bootstrapping problem is also avoided.

Figure 1: Language & Notification Brittleness

Our design objective is to create an extensible system that
can accommodate both legacy and newly developed
components – in other words, a system that is easily
extensible, rather than brittle. Figure 1 summarizes the
qualitative nature of selecting combinations of underlying
integration technologies. The conclusion, based on
experience, is that pull is better than push and language
neutral is better than language bound. When combined, the
choice falls to employing a solution with a standardized data
format over a language neutral transport.
 Choosing a Stateless, Language Neutral Transport

We surveyed the common distributed systems and
integration patterns in production use and chose the
approach taken by the most successful large distributed
system in the world today: the World Wide Web (WWW).
The HyperText Transfer Protocol (HTTP) [5] was developed
as the basis of the World Wide Web. The architectural style,

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bringing Best Practices from Web Development Into the Vehicle, Branigan, Cunningham, Hackleman, Dempsey & VanderLei.

Page 4 of 6

known as REpresentational State Transfer (REST), used to
design HTTP is described in Dr. Roy Fielding’s PhD thesis
[6]. We refer to applications adopting this design as being
RESTful.

Ubiquitous support in all modern programming languages
was a considerable factor in choosing HTTP as the language
neutral transport. There is wide experience and an array of
information about HTTP available on the Web and in
literature. Practically speaking, that means a large group of
developers won't need to learn anything new to adopt this
approach. This helps to lower the overall system cost by
reducing the training and support burden. This means that
developers can get up and running quickly.
CHOOSING A STANDARD DATA MODEL AND FORMAT

There are many different technologies that can be used to
describe a data model: Unified Modeling Language (UML)
[7], eXtensible Markup Language (XML) Schema [8], or
Resource Description Framework Schema (RDF-S) [9] and
many others.

In determining the data model to use, we had one primary
issue to consider. Does the data model have an open
worldview or a closed worldview? The distinction between
the two can be most clearly seen when one attempts to
extend a system beyond the use cases for which it was first
designed. In closed worldview systems, new use cases can
result in significant rework and extremely high cost. This is
because the data model must be changed to incorporate the
new data that the new use cases require. Existing systems
must be upgraded or retrofitted to support handling the new
data model. By contrast, in an open worldview system,
additional use cases can be added easily, since the existing
parts of the system don’t make assumptions about things
they don’t understand. A concrete example of the
philosophical difference between the two approaches can be
seen in basic Boolean logic. In a closed world, if a
statement cannot be proven to be true, then it is assumed to
be false. In an open world, if a statement cannot be proven
to be true, then no assumption can be made about the truth of
the statement.

When looking at the data models available, we ended up
choosing to use RDF-S to describe our data model. RDF-S
has an open worldview, in contrast with XML Schema.
Additionally, RDF-S has multiple data format
representations and it is possible to make additional formats.
This provides the flexibility to use one data model with
different formats in use, depending on the capabilities of a
specific system. This also allows us to avoid the
performance penalty of relying heavily on XML based
formats on embedded systems, while still making XML
representations available on enterprise systems.

There are many different popular data formats in use
today: XML, RDF-XML, JavaScript Object Notation
(JSON), Comma Separated Values (CSV) and others. We
have defined representations for our data model in RDF-
XML, CSV and JSON. We have also evaluated the
possibility of representing our data model in the Common
Data Format (CDF), which is in wide spread use within the
agencies of the US Federal Government.

THE ARBOR DATA MODEL
The codename ‘Arbor’ is used for our data model and

system architecture. As mentioned, we chose to use RDF-S
to create our data model. We used a technology known as
the Web Ontology Language (OWL) [10,11] to represent the
classes and properties of our data model. By using OWL
and restricting ourselves to a specific subset of its
capabilities (OWL-DL), it is provable that data based on our
data model can be reasoned about in a deterministic, finite
amount of time. This is important for algorithm authors,
because they need to use probabilistic and automated
techniques to develop prognostic and diagnostic algorithms
from vehicle sensor data. Using a data model that provides
computational guarantees is a win for algorithm authors.

The Arbor data model is composed of four OWL Classes
and several properties. We cover the classes and the more
important properties below.

• Control
• Datapoint
• Class
• Entity

In the Arbor data model, the unit of recording a sensor
value, or posting a new value, is the Datapoint, comprised of
the three atomic pieces of information.

 Unique Event Timestamp Control Identifier Value

In the CSV format, each event is presented on its own line.

1001, temperature, 85

In the JSON format, each event is presented in its own
JSON object.

 [{
 "timestamp":"1001",
 "control":"temperature",
 "value":"85"
 }]

The data presented here are just individuals of the
Datapoint class. The Unique Event Timestamp is a property
on the individual. The Control Identifier is another property

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bringing Best Practices from Web Development Into the Vehicle, Branigan, Cunningham, Hackleman, Dempsey & VanderLei.

Page 5 of 6

and the Value is the third property. In Arbor, we require that
the Control Identifier actually be a reference to an existing
individual of the type Control. The Control individual holds
all of the critically important information for applications
dealing with the data. However, Control properties don't
vary with each data point, and as such are not stored with
each event. In Arbor, we call these properties extra data.

A Control with the control identifier temperature might
have the following extra data properties (in CSV format).
The URL prefixes of the property keys are not shown in this
example for layout purposes.

uri http://www.bandxi.com/engineTemp
encoding UTF8
type float
name Engine Temperature
units C
highWarnThreshold 75
highErrorThreshold 90

There are two additional parts of the data model.

• A Class has a unique identifier, which should be a
URL, and also has a list of Control URI property
values. A Class individual states that a
implementer of that Class type must contain
controls instances with the same URI values as
those specified in the Class.

• Entities list their specific control identifiers and the
Classes that the entity implements.

Here is a specific example of a class based on the Control
already specified.

Class
 Identifier = http://www.bandxi.com/example/Foo
 Uri = http://www.bandxi.com/engineTemp

Entity
 Identifier = {Vehicle VIN Number}
 Control = temperature
 Control = …
 Class = http://www.bandxi.com/example/Foo

Entities and Classes are used for several purposes. They
enable easy synchronization of sensor values between peers
in mesh networking environments. They also allow
programmers to understand the relationships between sensor
values and to know that if a given entity declares that it
implements a particular Class, then the URIs defined by that
class will be available.

RESTFUL INTERFACE: DEVICE SERVER
The discussion to this point has centered on the data model

and data formats. It is equally important to understand the
RESTful interface to the data and the available mechanisms

available to manipulate and query the data. There is a
component in Arbor called the Device Server that
implements this RESTful interface.

The Device Server is responsible for maintaining history of
Datapoints, as well as descriptive information on Entities,
Classes, and Controls. The Device Server has the following
capabilities:

• Create a New Control
• Read an Existing Control
• Delete an Existing Control
• Create a New Entity
• Read an Existing Entity
• Delete an Existing Entity
• Modify an Existing Entity

o Add a Class Declaration
o Remove a Class Declaration
o Add a Control Instance
o Remove a Control Instance

• Create a New Class
• Read an Existing Class
• Delete an Existing Class
• Read the latest Control value
• Read the previous Control value history
• Write a Control value
• Lookup all Entities which declare a Class
• Lookup a control identifier by Control URI

Local programs make use of these capabilities as well as
remote peer systems, which can also use these capabilities to
inspect the state of the system.

EXAMPLE: CONDITION BASED MAINTENANCE
It is useful in understanding Arbor to run through an

example, for instance adoption in the field of Condition
Based Maintenance. For simplicity, let’s call logic
executing on the system an algorithm. Algorithms will need
to know the input sensors that they require input from in
order to execute. They will also need to know the output that
they will be producing and making available to the rest of
the system. Each algorithm will be able to identify the
sensors that it requires by their URL. Additionally, it can
identify its output by a URL as well.

In order to make use of data from a particular sensor, the
algorithm must have internalized the properties that it needs
to run. As a simple example, imagine an algorithm that only
monitors engine temperature from a J1939 bus. At
development time, the algorithm would know about the
concept of a highWarnThreshold and a highErrorThreshold.
The algorithm would know that these extra data properties
are of the type float and may be positive or negative. It

Proceedings of the 2009 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Bringing Best Practices from Web Development Into the Vehicle, Branigan, Cunningham, Hackleman, Dempsey & VanderLei.

Page 6 of 6

would also know that the interpretation of the value is
dependent on the value of the units property (Celsius or
Fahrenheit). Since this information is baked into the code of
the algorithm, it doesn't need to fetch the URLs. It's
important to leave the properties as URLs, because this
provides a namespacing capability, which keeps one
algorithm’s notion of units from colliding with another. The
verbosity isn't a concern for the extra data information,
because it only exists once per sensor.

Once the algorithm has executed, it needs to produce an
output. It does this by creating a control and writing its
output value. The control is associated with the entity of the
current vehicle. Any necessary class declarations can be
made on the vehicle entity after the control is created.

When the vehicle is sensed by a peer system, such as a
scan tool in a motor pool, the scan tool can communicate to
the HTTP interface and retrieve the sensor values and
algorithm output values.

EXAMPLE: MINING & CONSTRUCTION
The above described system architecture has been

employed to build the operator displays for mining and
construction equipment. For example, one system monitors
and controls the engines, auger, and elevators of a salt
harvester over a J1939 vehicle bus. A salt harvester operates
much like a grain combine, as it drives across a salt flat,
grinding salt off the ground and feeding it onto elevators
which carry it upward and outward for deposit into large
dump trucks riding alongside. The Arbor based salt
harvester application achieved Technical Readiness Level
8/9, as it is now operating in the wild on the salt flats.
Additionally, another system to monitor and control the
engine, hydraulics, and solenoids of a foundation drill is
ready for testing and should be fielded soon.

EMBEDDED PLATFORMS
At the beginning of the paper, we described the embedded

platforms as resource constrained. We have successfully
deployed this system on several ruggedized, low-power
embedded systems. Examples of existing systems include:

• 300 MHz PowerPC, 64Mb RAM, 64Mb ROM,
running Linux

• 400 MHz ARM, 32Mb RAM, 32Mb ROM, running
Windows Mobile 5

SUMMARY
 “We are all agreed that your theory is crazy. The question

that divides us is whether it is crazy enough to have a
chance of being correct.”

The above quote is attributed to famous physicist Niels
Bohr in regard to Wolfgang Pauli’s non-linear field theory of
elementary particles. When we first began discussing

packing a web application server architecture into an
embedded device, it sounded like crazy talk. However,
being good scientists, we decided to run some experiments
before dismissing it. After all, our basis for thinking it was
a crazy idea was no more robust than was our basis for
conceiving it in the first place! In the end, taking this
approach has proven successful and relaxed some of the
design constraints that had previously challenged us.

REFERENCES

[1] Waldo, J., Wyant, G., Wollrath, A., and Kendall, S.,

A Note on Distributed Computing, Technical Report
SMLI TR-94-29, Sun Microsystems Labs, 1994,
http://research.sun.com/techrep/1994/smli_tr-94-29.pdf

[2] Liang, S., Java™ Native Interface: Programmer's
Guide and Specification, Prentice Hall, 1999.

[3] Hohpe, G. and Woolf, B., Enterprise Integration
Patterns, Addison-Wesley, 2003.

[4] Chappell, D., Enterprise Service Bus, O’Reilly
Media, 2004.

[5] Fielding, R., et al Hypertext Transfer Protocol
HTTP/1.1: Request for Comment 2616, The Internet
Engineering Task Force: Network Working Group,
1999. http://www.w3.org/Protocols/rfc2616/rfc2616.html

[6] Fielding, R., Architectural Styles and the Design of
Network-based Software Architectures, Dissertation
at The University of California at Irvine, 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[7] Klyne, Graham and Jeremy Carroll, Resource
Description Framework (RDF): Concepts and
Abstract Syntax, World Wide Web Consortium
(W3C), 2004.

[8] Manola, Frank and Erica Miller, Editors, RDF
Primer, World Wide Web Consortium (W3C), 2004.

[9] Antoniou, Grigoris, A Semantic Web Primer, 2nd
Edition, MIT Press, 2008.

[10] Smith, Michael, Chris Welty, and Deborah
McGuiness, OWL: Web Ontology Language Guide,
World Wide Web Consortium (W3C), 2004.

[11] Lacy, Lee, Owl: Representing Information Using the
Web Ontology Language, Trafford Publishing, 2005.

